

Figure 3 - Exposed Precambrian Basement Rocks and Major Features of Colorado (from Tweto, 1987)

EXPLANATION Description of Map Units

MESOPROTEROZOIC (1,600 -- 900 Ma)

Rocks of Pikes Peak batholith (~1,010 Ma)
Pink, coarse-grained biotite granite intruded
by plutons of cogenetic, fine-grained granite,
fayalite granite, riebeckite granite, alkali
granite, syenites, and gabbro

Yu	Uinta Mountain Group Quartzite,
	conglomerate, and shale

Υv	Vallecito Conglomerate Gray,
	crossbedded conglomerate and quartzite

and minor syenitic rocks

Foliated granodiorite of ~1.4 Ga age group --Gray, foliated granodiorite to monzogranite

PALEOPROTEROZOIC (2,500 -- 1,600 Ma)

Granitic rocks of ~1.7 Ga age group -- Gray, equigranular to porphyritic, foliated to massive, granodiorite and associated intermediate rocks

Mafic rocks of ~1.7 Ga age group -- Gabbro and diorite

PALEOPROTEROZOIC GNEISS COMPLEX

Biotite gneiss and migmatite -- largely metasedimentary

Xqs Quartzite and mica schist facies of Xb unit

Felsic and hornblendic gneisses -- largely metavolcanic

Contact, or limit of basement at surface

Boundary between geologic units inferred from subsurface data, including aeromagnetic data

High-angle fault -- Solid where basement is at surface; dashed in subsurface

Thrust fault - Sawteeth on upper plate; solid where basement is at surface; dashed in subsurface

Precambrian ductile shear zone -- black in exposed areas; green in covered areas

Outline of Colorado Mineral Belt

Caldera boundary

Volcanic field